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Synopsis.
The cross section for ejection of /¿-electrons by slow ions is evaluated in the 

Born approximation for the incident particles, using relativistic electron wave 
functions. Numerical results are given for lead (and silver) and compared with 
experimental cross sections for excitation of characteristic K x-rays. For silver, 
the relativistic corrections are small, but for lead they are appreciable and improve 
the agreement with experiment. Still, the theoretical cross sections for Pb as well 
as for Ag are not in quantitative agreement with the experimental values. The 
discrepancy is attributed mainly to a failure of the Born approximation.

Printed in Denmark. 
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I. Introduction.

qphe characteristic x-rays following the ejection of inner atomic electrons
1 by the impact of heavy charged particles have been investigated by 

several authors in the past*.  Recently, more precise experimental data have 
become available1) 2) 3) 4). The process has received increasing attention 
since it yields electrons and x-rays in the same energy range as nuclear 
transitions following Coulomb excitation of heavy nuclei. From the point 
of view of the nuclear physicist, the atomic process constitutes an undesir
able background, and it is thus necessary to know its dependence on various 
parameters. On the other hand, it is, at least in principle, accessible to 
exact calculation and might therefore serve as a reference for calibration 
of nuclear cross sections.

* For historical details, see reference 1.
** One arrives at the same conclusion looking at the collision classically, which is permitted 

for slow bombarding particles. The main contribution to the cross section should arise from 
particles with impact parameters of the order of atomic dimensions. If their energy is not too 
low', these particles are but slightly deflected by the Coulomb field of the nucleus. Thus, the 
influence of the field is not very important for the calculations and the wave functions for 
the particles may be described throughout by plane waves.

Following the fundamental stopping power calculations by Bethe, 
Henneberg5) has presented a theory of the ionization of the /v-shell by 
the impact of slow protons and a-particles. He neglected the Coulomb interac
tion between the incident particle and the nucleus. He justified the use of 
the Born approximation for the impinging particles by proving that the 
effective part of the product of initial and final wave functions of the heavy 
particle does not differ appreciably from its plane-wave substitute, though 
the wave functions themselves are heavily distorted**.

Assuming the Born approximation for the bombarding particles, the 
cross section for ejection of a K-electron is given by

(0

1
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Here Zi, M, and Ei are the charge, mass, and energy of the incoming 
particle, respectively. The momentum transfer in the collision is given by 
îi(/ = A (A'o — /<), where ÎiKq and îïK are the momenta of the incident 
particle before and after the collision, respectively, (/min is defined as 
7min = Aro-A' and, if the energy AE lost by the heavy particle is small 
compared to its initial energy Ei, we have approximately

9m in

The quantity J is given by

J = 
f

where ^í(r) and yy(r) are the initial and final wave functions of the electron, 
respectively. The squares of the matrix elements for the different final 
slates arc summed, since we are not interested in the angular distribution 
of the ejected electrons.

Henneberg obtained his results by using non-relativistic Coulomb wave 
functions for y/(r) and ipf(r). He roughly corrected for the screening by 
adding a constant term to the Coulomb potential and arrived at the following 
expression for the cross section for excitation of A.r-rays*:

2

cr = Øo (t/z) X 10“16 cm2. (4)

Z is the charge of the nucleus, & is the ratio of the observed A-shell 
ionization energy Ek to the “ideal ionization energy in the absence of older 
screening’’, and øq (»/') is defined by

The quantity r/' is given by
, 4 tn Ad

V M&EK’

m being the mass of the electron. The above formulae are derived on the 
assumption that is small. Accordingly, the cross section depends mainly 
on the factor Zf?/4Z_4**.

The experiments confirm qualitatively Henneberg’s theory, particularly 
the dependence of the cross section on the energy and mass of the incident

* We quote this formula as given in reference 1.
** A simple derivation of essentially the same result has been given in reference 4. 
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particle and on the energy of the A'-shell. However, there are serious quan
titative discrepancies. Especially in heavy elements, the experimental cross 
sections are up to several times larger than those derived from formula (4).

This deviation is just in the direction expected, considering the neglect 
of the relativistic effects in the heavy atoms. As it can be seen from expres
sion (2), the value of l/çmm is in cases of interest considerably smaller than 
the radius of the A-shcll. The factor eiqr in the matrix element (3) is thus 
a fast oscillating function and any increase in the electron density al the 
origin, as caused by relativistic effects, will therefore raise the cross section 
appreciably.

Consequently, it seemed of interest to repeat the calculations, using 
relativistic wave functions for the electron. In the following chapter the 
derivation is outlined and the final formulae are given; mathematical details 
are, however, deferred to the Appendix. In Chapter III, the results are 
discussed and compared with experiments.

IL Framework of the Calculation.

We insert into the matrix element (3) the stationary6*-  7* Coulomb solu
tions of the Dirac equation. They can be written8*

with

and

x = 4 1, T 2, .. .

Zx = 2? < ¿0)- 1/2,/z-r, r| Z(x), l/2,;,/z 99)T

J = 1/2

-J < /z <j

We write the radial wave

I (x) = x if x > 0

I (x) = I X J - 1 if X < 0 

functions in the form

(6)

4 (r) = Dr 111 O') f7x 0) = 1> (0 •
For a discrete stale, these quantities are given by9*

11 (r) -- I 1 - z? e tN ' [n ø ( - n' + 1,2 + 1, 2 eNr)
+ (N- x) 0 (- n', 2 + 1, 2 eNr)]

V (r) - |/1 + # e £n r [ - nf & ( - n' r 1, 2 + 1, 2 r)

+ (A-x)0(-zz', 2 1,2 eArr)] } (7)
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■& = EI inc2 =

en = " N = I n2 - 2 il' ( I x I - y) 7z = /z' + |x 
A r/0 ’ 11

l/ZW*  i " : O (2ey)>,«+1/* 
~ f 4(n'.')Lv(A--x) 7’(2yx + I)’

(7)

Here, ao is the Bohr radius, C the fine structure constant, and A the total 
energy of the electron. We use the symbol 0 for the confluent hypergeometric 
function, regular at the origin. For the special case of a Æ-electron, we have 
x = — 1 , n' = 0, and

/*(r)  = -|/l-yiCr^ lß £ir £i = n
(to

. (2£1> + 1/2<7 (r) = |/1 + yi Cr?1 xe e‘r C = ----- —- .
’ |/2r(2?1+l)

(8)

In the continuum, we have10)

zz (/•) = - 2 J IV- 1 ry*Iin  [e Ur+u/(yx+ iay&ty*  + 1 + ioc, 2yx + 1,2 zät)] 

zz (r) = 2 I W+ 1 P'« Re [e~lkr+l>1 (yx + z a) 0 (yx +1 + z a, 2yx + 1, 2 zåt)] 

e2ii^- - X-Z/? /? = y a = ßW W=E//nc2 = 1/1+Í—Y 
yK + ia k I \incj

I) =__ 2?xl___ \//rnk^-1/2e7Ta'2\r(yx
r(2yx + l)/z|' 77 ' + í a)I,

(9)

where I in and Re denote the imaginary and the real part of the expression 
in parentheses, respectively. These wave functions are normalized per unit 
energy interval.

In the matrix element (3) we integrate over the angles, sum over the 
final magnetic quantum numbers, and average over the initial magnetic 
quantum numbers, using standard techniques. We get

J = ¿ I *f\  i Uz(xf) ('/'') [A/’/ + fWh,2i/r)2> (10)
f

ji(qr) being the spherical Bessel function.
The radial integration can be carried through, as outlined in the Appen

dix. The result is a power scries in Silq. We may write
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with

(11)
2^ +1

2

quantities pm and qm are different according to whether the final

(12)

X

where F is the usual symbol for the hypergeometric function. 
For a final state in the continuum, we have

The
state is in the discrete or in the continuous spectrum. In the discrete spectrum, 
we have

' = Ü.Á ('/<•) [fp + gig‘f ] r^lr - Aq-VW" S^Jq)

pm = 2 Ke { F( -2 m, y/ + 1 + i a, 2 yf + 1, z/) v2 m X } 

qm = 2 Re ( F( - 2 m — 1 , y/ + 1 + z a, 2 y/ + 1, z;) v2 m +1X }

2 ik < . k
y =------ .y u = 1 + z

£1 + ik £!

F r(c)_____  ___
r(a +1 /2) F( 1 - b) ’ U F(a) F( 1 /2 - b) 

A = BDf B = C

Pm = [s (iV/ - X/) F (-2m, - n f, 2yf+ \ , y)
— tn'f F(- 2m,— n'/+ 1 , 2y/+ 1 , z/)] v2m 

qm = [s(ïV/-x/)F(-2m- 1 , -n'f, 2yf + 1, y)
— tn'f F(— 2 m — 1 , — n'f + 1, 2yf + 1 , y')] p2m + i 

s = |/ l+yi|/l+#/+|/l-yi|/l-$/

t = |/1 + yi l/l+tf,-I/T-yi (/ 1 F

(13)
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The limit k = O is not entirely trivial. We get

pm = I 2 (1 + yi) [(yy + 1 - yi - xy) ø (- 2 m, 2 yy i- 1 ,

ø(—2 m l,2yy+2, -2)]

qm = |, 2 (1 + yi) [(yf + 1 - yi - xy) ø(- 2 m - 1,2yy l 1, -2)
(14)

4410 radii of convergence of the series S are in the three cases

’2>4(1+¿)2* 

respectively.
44ie arguments of all complex 

- ti and +7i.

q^>4 + k\ q^>^,

quantities have to be taken between

44ie screening is taken into account by assuming an effective nuclear 
charge ZPyy=Z-0.3 and by adding Io the corresponding Coulomb poten
tial a constant term e-1V, representing the effect of the outer electrons. The 
energy V is the difference between the observed binding energy of the K- 
eleetron and the valne which this binding energy would have in the absence 
of outer screening.

The electron wave functions are thus as given above with Zeff instead of 
Z and the effective energy equal to Et - V, where Et is the ti ne total energy 
of the electron. Therefore, the wave functions of the electrons with Et< me2 + V 
are of the form given for the discrete spectrum, only that n' is in general 
non-integer.

In order to obtain the total cross section for ionization of the /i-shell, 
we have to square 1, given by (11), integrate over 7 (cf. (1)), sum over 
different xy (cf. (10)) and, finally, integrate over the energies of the outgoing 
electrons. The last two steps can only be done numerically.

III. Results and Discussion.

4 he cross section for 7i .r-ray production by protons has been evaluated 
for two elements, lead and silver, and for the impact energy range in which 
the experiments were performed, i. e. 1—3 MeV. The numerical work of 
evaluating the series S was considerable, since the series is alternating with 
increasing coefficients. We calculated it for three different energies of the 
ejected electrons and all contributing final x-values, taking into account 
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up to 15 terms. This was sufficient for 0<x’<0.3. In Table I, we give 
the quantity

T= (ç/ei)4^ + 4 x2y1 + 2y/+3 52( r) d v

as a function of £1/7 for lead. Also the normalization factors as calculated 
from formulae (7) to (9) arc listed.

Table I.

AE
WtWf)

88,0 keV
1,0000 (0,9749)

101 keV
1,0251 (1,0000)

123 keV
1,0686 (1,0435)

/

— 1 + 1 -2 — 1 + 1 _2 — 1 + 1 _ 2

0.00 0.3542 0 0 0.3333 0 0 0.3414 0 0
0.05 0.5030 0.00023 0.00036 0.4749 0.00055 0.00035 0.4890 0.00071 0.00036
0.10 0.6341 0.00116 0.00236 0.6001 0.00280 0.00232 0.6205 0.00362 0.00240
0.15 0.7266 0.00299 0.00718 0.6889 0.00722 0.00708 0.7145 0.00935 0.00734
0.20 0.7694 0.00557 0.01521 0.7302 0.01354 0.01503 0.7589 0.01759 0.01565
0.25 0.7626 0.00861 0.02574 0.7239 0.02082 0.02549 0.7524 0.02707 0.02660
0.30 0.7150 0.01155 0.03728 0.6781 0.02788 0.03690 0.7028 0.03608 0.03850

lvlA’! 2.309 8.596 2.804 2.521 4.284 4.304 2.576 4.377 5.758

The quantity T, defined in the text, is given for Pb as a function of sl/q and xy 
for three different energies of the ejected electrons. Wt and Wf are defined by W¿ = .E¿/mc2 
and Wy = (E7 — V)/mc2. In the last row the corresponding normalization factor is listed in 
units of £12yi + 2yy m//i2, i. e. A2 = A'2e12yi + 2y^ m¡h2. Only those final states which contri
bute more than 1 °/0 to the total cross section are taken into account.

From Table I it is seen that the values of T for the important transitions 
are not sensitive to the energy of the ejected electron and that, consequently, 
nearly the whole dependence of the cross section on this energy is contained 
in «/min- The interpolation and extrapolation of the data in Table I and the 
subsequent integration over the energy of the ejected electrons could there
fore be performed with sufficient accuracy. The cross sections for production 
of lead K .r-rays, as calculated from the data listed in Table I, are presented 
in Table II and Figure 1 and compared with experiments and previous 
theory. The computational accuracy of our results should be better than 
5 °/0. For silver, we had to extrapolate our values for T towards higher 
values of £i/g in order to come into the region covered by the experiments. 
Hereby, errors of the order of 20 °/0 could easily be introduced. The result-
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'Fable II.

Element Et(MeV) «exp <cm2) «thl <cm2) «th 2 (cir2)

Pb 1.00 1.04 xlO-27
1.50 3.54
1.92 3.6 X 10“27 1.56 X 10-27 7.0*
2.00 7.91
2.17 5.9 2.48 9.9*
2.40 10.5 3.43 13.1*
2.50 14.8
2.88 30.5 6.30 22.0*
3.00 24.2

Ag 1.70 0.69 X IO“24 0.76 X10-24
1.92 1.3 1.15
2.17 2.1 1.61
2.40 3.0 2.20
2.64 4.3 2.77
2.88 8.2 3.49

Experimental!) and theoretical cross sections as a function of the proton energy. 
The last column gives the relativistic cross sections. Those marked with an asterisk have been 
obtained by graphical interpolation. The last but one column includes cross sections as calcu
lated by Lewis et al.l) according to Henneberg’s theory. They have been partially corrected 
for relativistic effects since a relativistic screening factor 0 is used. A consistent non-relativistic 
procedure would yield cross sections smaller by ten to fifty per cent. In the case of silver, 
our relativistic cross sections agree with the semi-relativistic ones within computational errors.

ant cross sections are, however, somewhat accidentally equal to those 
evaluated by Lewis ct al.1) from Henneberg’s theory.

It is seen that, as expected, the use of relativistic electron wave functions 
increases considerably the cross section for heavy elements, and the agree
ment with the experimental data is thereby improved significantly. Still, 
there remains a discrepancy between theory and experiment, especially as 
regards the energy dependence of the cross sections.

Some uncertainty in the theoretical calculations arises from the manner 
in which the screening effect is taken into account. Work in related fields11) 
indicates that the form of the electron wave functions which we have em
ployed is adequate, since, in the central regions of the atom which contribute 
to the integral J, the assumed potential is rather accurate. An improvement 
of the treatment would, however, be obtained by adjusting the normaliza
tion factors for the final state wave functions to take into account the mod
ification of the potential at large distances. The effect is found to be small,



Nr. 2 11

Fig. 1. The figure is taken from ref. 1 (Fig. 4) and includes our results. The points give the ex
perimental quantity 0 = Z40/3,51 crxl016cm-2 as a function of r¡'. The left-hand curve re
presents the function ø obtained in the same way from the relativistic cross sections for lead. 
The right-hand curve represents the function <J0. In the case of silver, both curves coincide 

within computational errors. Relativistic screening factors 0 are used throughout.

except for very low electron energies, as is also indicated by the results 
obtained for the screening effect in other problems, such as internal con
version12). Still, since the low energy end of the spectrum of the ejected 
electrons contributes most of the total cross section, the correction might 
be significant. While no quantitative estimates have been made, it can be 
seen that the effect tends to decrease the cross section. In fact, the correct 
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normalization factor is expected to be smaller than that in (7), which cor
responds to bound slates. Moreover, the effect on the energy dependence 
of the total cross section appears to be small. It thus seems unlikely that 
the discrepancies between theory and experiment can be removed by im
proving the electron wave functions and their normalization factors.

Another source of error arises from the use of the Born approximation 
for the bombarding particles, which neglects the deflections of the incident 
particle in the Coulomb field of the nucleus.

The deflection prevents particles with low energy from coming close 
enough to the nucleus and thus decreases the cross section for A'-shell ioni
zation. One is tempted to consider the quantity ro Qmin, where ro = 
is the distance of closest approach, as a measure of the significance of this 
deflection’1 rather than the less stringent criteria of Henneberg. Il would 
seem that, if ro Qmin > 1, the ionization cross section must be considerably 
less than predicted by the Born approximation and that, only if roQmin « 1 , 
can the influence of the Coulomb field on the incident particle be neglected. 
Now, for electrons ejected with zero energy, we have roQmin =1 at a proton 
energy of about 1.1 MeV in lead and about 0.3MeVin silver. It should thus be 
understandable that, at proton energies of this order of magnitude or smaller, 
the cross sections fall below the predictions of the Born approximation.

While thus the failure of the Born approximation may account for the 
small cross sections observed at low energies and for the rapid energy 
dependence, it seems more difficult to explain the large experimental cross 
sections at higher bombarding energies. Additional measurements, especially 
of the absolute cross sections for silver, would therefore be of value as a 
further test of the theoretical calculations.

This work was started during the stay of one of the authors (C. Z.) at 
the Institute for Theoretical Physics in Copenhagen. He should like to ex
press his sincere gratitude to Professor Niels Bohr for the opportunity 
to study at the Institute as well as for his continued interest in this work. 
He is also indebted to numerous members of the Institute for helpful dis
cussions and suggestions.

Our special thanks are due Professor Aage Bohr for a critical examination 
of our paper. On his suggestion several improvements, especially in the third 
part of the paper, have been introduced.

We are grateful to Professor Anton Peterlin for his encouragement 
and the excellent working conditions provided at the Institute “J. Stefan”

* This has been suggested to us by A. Bohr.
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Appendix.

We have to evaluate the integral

1 = \ji <Qr) If if/ + giQf ] dr.

The functions ft and gt are defined in formula (8). We write the deriva
tion for the case when the final wave functions [f and gf are as given in (9). 
The other case is analogous. We express ji(qr) as a continent hypergeometric 
function

ji (qr) =-------- L/Z--------(qr)1 e~ÏQ r & (I + 1,2 I + 2,2 iqr).
P(Z + 3/2) 2Z+1

Using integral representations for the occurring confluent hypergeometric 
functions we are able to carry out the radial integration and arrive at the 
following expression:

1 , y/ -+ 1 + i ¡X, 21 + 2 ,

Here, the definition of the various quantities is the same as in the text. 
/?2 is the symbol for one of the Appell functions as defined in reference 13, 
page 230.

We may transform F2 into 7Y4 using the equation14) 

and get

7 “ CD(i)Ite |A'U1+iA)“2“Hi (2o>w+1 + i+3/2 •

O , 1 (12 U2,7+1 : 4(Ei + iA.y.ei + ;Jp
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Ih (<x, ß,y ,ó;x,y) (.y)m(ö)n in! n!

/O?

m

We require the analytical continuation for large values of q. It can be 
obtained in the following way. Using the notation of reference 13, we have

F( - 2 m, ß, <3, y) (4 .r) 771

7) (3/2-r
¿_ /m y_

(3/2)^ /7u

Applying this result to 
given in formulae (11)—(14).

a
4 .r ) 2

the matrix element I, we get the final expression,

Applying here the equation for analytic continuation of the ordinary 
hypergeometric function and working the same way backward, we arrive at

r(<3)

r(-i/2)r(y_) 4r) 2

ra/2)U(y) z
r(VH J

(y)m ni!

ot + 1
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